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Introduction 1
The hypergeometric function 2F1(α,β ,γ; z) was studied extensively in the eigh-
teenth century by Euler and Gauss. Beyond this first study it has continued to
interest mathematicians and inspired developments throughout the dicipline. The
hypergeometric function has three common descriptions given by a power series,
a solution to the hypergeometric differential equation, and an integral formula.

The hypergeometric differential equation is

z(1− z)
d2F

dz2 + (γ− (α+ β + 1)z)
dF

dz
−αβF = 0.

The regular solution to this equation is the hypergeometric function. Euler was
able to show that, provided 0< Re(β)< Re(γ), this solution is also described by
the following integral,

2F1(α,β ,γ; z) =
Γ(γ)

Γ(β)Γ(γ− β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− zt)−α d t.

When z is zero the hypergeometric function is one. As such, taking z to be zero
and setting γ = α+ β in the above formula results in the Euler beta integral. This
integral is evaluated as a ratio of gamma functions.

∫ 1

0

tα−1(1− t)β−1 d t =
Γ(α)Γ(β)
Γ(α+ β)

Re(α), Re(β)> 0.

As we will later show, gamma function evaluations such as this are a more general
phenomenom.

The Knizhnik–Zamolodchikov equations are partial differential equations which
arise from the representation theory of Lie algebras. They may be though of as a
generalisation of the hypergeometric differential equation. From the Knizhnik–
Zamolodchikov equations arise phase integrals similar to the Euler beta integral.
When normalised, these phase integrals have the following description.

For a simple Lie algebra g and highest weight representations Vµ, Vν and Vλ with
λ= µ+ ν −

∑n
i=1 kiαi , the phase integral is given by

∫







k
∏

i=1

t
−(µ,αti

)
i (1− t i)

−(ν ,αti
)
∏

1≤i< j≤k

|t i − t j|
(αti

,αt j
)







γ

d t1 . . . d tk.
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In 1988 Mukhin and Varchenko [11] conjectured that if the representation Vλ
occurs with multiplicity one in the tensor product decomposition of Vµ⊗ Vν , then
this integral has an evaluation as a ratio of gamma functions. Various subsequent
results [10,16–18] have supported this conjecture.

To write down the integral, let alone to evaluate it, requires knowledge of the
ki values. For any particular µ, ν and λ, determining these values is a simple
calculation. However, previous results towards the conjecture suggest that a
fruitful approach is to consider infinite families of µ, ν and λ where the conjecture
applies. Once such an infinite family has been indentified, an explicit description
of the set of ki values which occur is required. This is the aspect of the problem
which we have focused on. The goal is to use combinatorial tools to find infinite
families with λ occuring with multiplicity one and then to provide a description of
the corresponding ki values.

Beyond this introduction, the document is divided into three key sections. The
first provides an overview of the relevant background material required to state
and understand the conjecture. In the second section we state the Mukhin–
Varchenko conjecture more explicitly and examine a few previous evaluations of
the integral. Finally we explore several situations where the conditions of the
conjecture hold and describe explicitly the ki values there.
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Fundamentals 2
This chapter provides an overview of the key background material required to
understand the later sections of the thesis. All the material found here (and more)
may be found in the excellent books by Erdmann and Wildon [2], Fulton and
Harris [6], and Humphereys [8]. A second book by Fulton [5] is an excellent
reference to Young tableaux and the Littlewood–Richardson rule.

Each section of this introductory material presents and explores a key concept
related to the later parts of the thesis. In the first section we introduce Lie algebras,
the object upon which the whole field is based. Following from Lie algebras is the
notion of their representations. The third section is particularly important as it
introduces root systems and weight lattices which form the language of most of
the thesis. To connect representations and root systems we then discuss highest
weight modules. Following directly from such modules is the Weyl character
formula and two helpful algorithms for decomposing tensor products.

2.1 Lie algebras.

A Lie algebra is a vector space L together with a binary operation L× L→ L called
the Lie bracket. This is notated with square brackets, (x , y) 7→ [x , y], and must
satisfy

[·, ·] is bilinear

[x , x] = 0 for all x ∈ L

[x , [y, z]] + [y, [z, x]] + [z, [x , y]] = 0 for all x , y, z ∈ L.

The third property above is called the Jacobi identity.

By applying bilinearity and the second property to x + y we get

0= [x + y, x + y] = [x , x] + [x , y] + [y, x] + [y, y] = [x , y] + [y, x]

and hence the bracket is antisymmetric, [x , y] =−[y, x]. Some authors replace
the second property with this antisymmetry as an alternative definition.

As a canonical example of a Lie algebra, given any vector space V of dimension
n, the set of linear transformations V → V with Lie bracket [x , y] = x y − y x
forms a Lie algebra. This is called the general linear Lie algebra over V and is
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denoted gl(V ). Often it is helpful to fix a basis for V in which case we identify
gl(V ) with the space of n×n matrices over F , the field of V . Then we write gln(F).

Any subalgebra of gln(F) is called a linear Lie algebra. The most prominent
example of these is the special linear Lie algebra sln(F). This corresponds to the
set of matrices in gln(F) with trace zero. We are usually interested in the field of
complex numbers so we often write just gln and sln instead of gln(C) and sln(C)
respectively.

Two substructures play a key role in understanding Lie algebras; subalgebras
and ideals. A subalgebra of a Lie algebra L is a vector subspace which is a Lie
algebra itself under the restriction of the Lie bracket. An ideal of a Lie algebra
L is a subalgebra I ⊆ L satisfying [x , y] ∈ I for all x ∈ L, y ∈ I . Unlike rings,
there is no distinction between left and right ideals as the Lie bracket satisfies
antisymmetry.

Using the Lie bracket we may define the product of two Lie subalgebras I and J ,

[I , J] = Span{[x , y] : x ∈ I , y ∈ J}.

With this notation the definition of an ideal may be restated as a subalgebra I of L
satisfying [I , L] = I . Frequently we use this product notation to define new ideals.

The simplest nontrivial Lie algebras are the abelian ones. A Lie algebra is
called abelian if [L, L] = 0 or equivalently if [x , y] = 0 for all x , y ∈ L. This
nomenclature may be understood intuitively by considering gln. Here the Lie
bracket is [x , y] = x y − y x and hence,

[x , y] = 0⇔ x y = y x .

Closely related are the ‘nearly abelian’ solvable Lie algebras. These have a termi-
nating chain of ideals where each consecutive quotient is abelian. Alternatively
we define the derived algebra of L to be [L, L] and the derived series by,

L(0) = L

L(n+1) = [L(n), L(n)].

Then a Lie algebra is solvable if its derived series terminates, that is L(n) = 0 for
some n> 0.

There is a similar definition for nilpotent Lie algebras. Define,

L0 = L

Ln+1 = [L, Ln].

Then a Lie algebra is nilpotent if this series terminates.

The definition of a solvable Lie algebra is very similar to that of a solvable group.
Unsurprisingly we also have a similar definition to simple groups where ideals
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play the role of normal subgroups. With this is mind, a Lie algebra is simple if it is
not abelian and has no nontrivial ideals. That is, the only ideals of L are 0 and L
itself.

Slightly more complicated are the semisimple Lie algebras. If a Lie algebra
has no nontrivial solvable ideals it is called semisimple. Clearly every simple Lie
algebra is semisimple and hence the name. As a convention, in later sections we
will use L to denote a general Lie algebra and g for a semisimple Lie algebra.

In this document, and throughout much of the literature, the focus is on the
simple Lie algebras. The remainder of this section is a justification of this seemingly
narrow focus with two key lemmas about the structure of Lie algebras.

Define the radical of L, Rad L, to be a maximal solvable ideal of L. That is, for
any solvable ideal I of L there must hold I ⊆ Rad L. Since sums of solvable ideals
are solvable, the radical is unique.

The first lemma below demonstrates that any Lie algebra has a solvable ideal
with a semisimple quotient. The second lemma then describes the structure of
semisimple Lie algebras. Although not required anywhere else in the thesis we
give the proof of these two lemmas for interest’s sake. The first proof uses only
the elementary definitions already described. The second relies of some more
advanced machinery so we only give a sketch of the result.

Lemma 2.1.1. If L is a Lie algebra then L/Rad L is semisimple.

Proof. First we show that for an ideal I of L, if I and L/I are both solvable, then
so too is L. Let φ : L→ L/I be the canonical homomorphism, φ(a) = a+ I . Then
we have φ(L(0)) = φ(L) = L/I = (L/I)(0). Furthermore,

φ(L(k+1)) = φ([L(k), L(k)])

= [φ(L(k)),φ(L(k))]

= [(L/I)(k), (L/I)(k)]

= (L/I)(k+1).

That is, the homomorphism preserves the derived series. Then noting that I is not
necessarily an ideal of L(k) we have,

(L/I)(k) = φ(L)(k)

= φ(L(k))

= (L(k)+ I)/I .

Since L/I is solvable, (L/I)(n) = 0 for some n. Using the above equivalence there
thus holds L(n) ⊆ I . But I is also solvable, so I (m) = 0 and hence (L(n))(m) =
L(n+m) = 0. Therefore L is solvable.
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Now suppose that J is a solvable ideal of L/Rad L. Then there exists some ideal
I with Rad L ⊆ I ⊆ L and φ(I) = J . From the result just proved this I would be
solvable. But Rad L is maximal and hence I ⊆ Rad L and so J = 0. Thus L/Rad L
has no nontrivial solvable ideals and as such is semisimple.

Lemma 2.1.2. Every semisimple Lie algebra is a direct sum of simple Lie algebras.

Proof. This result uses Cartan’s criterion for semisimplicity. The Killing form is
a product on a Lie algebra. The product is described somewhat in Section 2.4
where it arises to form a root system. Cartan’s criterion states that a Lie algebra is
semisimple if and only if the Killing form is nondegenerate.

From here the proof of the lemma follows by considering orthogonal comple-
ments with respects to this Killing form. If g is semisimple but not simple it has
some nontrivial ideal I . Then I⊥ is also an ideal of g and since the Killing form is
nondegenerate, g = I ⊕ I⊥. Restricting the form then tells us that I and I⊥ are
also semisimple. By repeating this process we get the result.
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2.2 Representations

Representations and modules are methods to make a vector space resemble an
algebraic object. In particular we are interested in representations of Lie algebras.
The hope is that understanding the structure of a Lie algebra’s representations
will aid in understanding the Lie algebra itself.

Suppose V is a vector space over the same field as a Lie algebra L. Then a
representation of L is a homomorphism ϕ : L → gl(V ). Here homomorphism
means that the Lie bracket is preserved, that is,

ϕ([x , y]) = [ϕ(x),ϕ(y)] = ϕ(x)ϕ(y)−ϕ(y)ϕ(x).

A module of L is a vector space V over the same field as L together with an
action L× V → V denoted x · v. This action must satisfy bilinearity,

(λx +µy) · (σv+τw) = λσ(x · v) +µτ(y ·w) +λτ(x ·w) +µσ(y · v)

and be consistent with the Lie bracket,

[x , y] · v = x · (y · v)− y · (x · v)

for all elements x , y ∈ L, v, w ∈ V and λ,µ,σ and τ ∈ F . We say that V is an
L-module.

Modules and representations are effectively two equivalent ways to describe
the same object. Given a module, define the function φx(y) to be the homomor-
phism of V induced by the action of x , φx(y) = x · y. Then the representation
corresponding to the module is given by x 7→ φx .

As a first example we give the trivial representation. This representation maps
every element of the Lie algebra to the zero element of gl(V ). It automatically sat-
isfies the bilinearity and homomorphism conditions. However this representation
is not very interesting.

Second is the vector, standard or defining representation (these are all names for
the same object). This is the inclusion map of any linear Lie algebra into gln(C).
For the classical Lie algebras this is their usual description as a set of matrices,
hence the name defining representation.

Of more interest is the adjoint representation. This representation is very useful
as it is closely linked to the Lie bracket. Given any x ∈ L we define a map
adx : L→ L by,

adx(y) = [x , y].

Then the adjoint representation maps each x ∈ L to adx . This makes L itself an
L-module.
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Given two representations of L, we may combine them to form a new representa-
tion with the direct sum. Here the homomorphisms simply act on each component
separately.

Submodules of a module are vector subspaces which are modules in their
own right. Two subspaces which are always submodules are the trivial cases:
the zero space and the whole module. A module is said to be irreducible if it
has no nontrivial submodules. Conversely, V is a reducible module if it can be
decomposed into a direct sum of two submodules, V = V1⊕ V2. Continuing this
process, a module is completely reducible if it may be decomposed as a direct
sum of irreducible modules. It is a theorem of Weyl that every finite dimensional
module of a Lie algebra is completely reducible with a unique decomposition.

More complicated than the direct sum is the notion of the tensor product of
two representations of a Lie algebra. Consider representations φ : L→ gl(V ) and
ψ : L → gl(W ) of the Lie algebra L into the vector spaces V and W . Then the
tensor product of these representations is the map (φ⊗ψ) : L→ gl(V ⊗W ) which
sends each element g of L to a linear transformation of V ⊗W . Denoting this
transformation by (φ ⊗ψ)g it is then described by,

(φ ⊗ψ)g(u⊗ v) = φg(u)⊗ v+ u⊗ψg(v).

We give the same definition again in the language of modules. Given L-modules
V and W , the tensor product V ⊗W is an L-module under the action,

x · (v⊗w) = (x · v)⊗w+ v⊗ (x ·w).

Later in this chapter we study the structure of these tensor products in greater
detail. Particularly we are interested in decomposing the tensor products into a
direct sum of irreducible modules.
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2.3 Root systems

Root systems arise naturally in the study of irreducible representations of simple
Lie algebras. Before developing this connection, it is helpful to introduce the
concept abstractly so as to develop a strong geometric intuition about these
structures.

Reflections form the basic building blocks of a root system. For any vector
α in some Euclidean space E we denote the reflection through the hyperplane
orthogonal to α with sα. This reflection sα acting on a vector β is described
explicitly by the formula,

sα(β) = β −
2(β ,α)
(α,α)

α.

The quantity 2(β ,α)/(α,α) occurs so frequently in this theory that we abbreviate
it by 〈β ,α〉. In contrast to the standard Euclidean inner product (β ,α) this is not
symmetric.

Root systems are, in essence, a set of vectors with a certain degree of reflective
symmetry. As a precursor to the definition, consider the example below in Fig-
ure 2.1. This root system is known as B2. Notice that these vectors are invariant

Figure 2.1: The root system B2.

under any of their reflections. Also observe that the only colinear vectors are
negatives of each other. These two properties together with restriction on the
angles between the roots characterise a root system. With this in mind we define
a root system.

Definition 2.3.1. A root system is a set of vectors Φ contained in some Euclidean
space E that satisfy the following axioms.

� Φ is finite and spans E.

� For all α ∈ Φ, the only multiples of α in the root system are α and −α.
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� sα(Φ) = Φ for all α ∈ Φ.

� 〈α,β〉 ∈ Z for all α,β ∈ Φ.

Unsurprisingly the elements of Φ are called roots. The dimension of E is said
to be the rank of the root system. The second or fourth requirements above
are occasionally omitted in the definition of a root system. Then a root system
satisfying the second is called reduced and a root system satisfying the fourth is
called crystallographic. We will not need to make these distinctions.

To describe root systems we will usually embed them in Rn. It is sometimes
convenient to have E only a subspace of Rn. With this in mind, to clarify some later
notation, we will use r for the rank of the root system and n for the dimension of
a particular embedding.

A subset ∆⊆ Φ is a base of Φ if ∆ is a basis for E and every element of Φ may be
expressed in this basis with either strictly positive or strictly negative coordinates.
Elements of a base ∆ are called simple roots. Given a particular choice of simple
roots, the subset Φ+ of Φ containing all roots with positive coordinates is called
the positive roots. Throughout this exposition we use α1, . . . ,αr to label the simple
roots of a rank r system.

Two further examples of root systems are given in Figure 2.2 with a particular
choice of simple roots shown. Note that B3 is three dimensional. Indeed there
exist root systems of any dimension.

α1

α2

α1

α2

α3

Figure 2.2: The root systems G2 and B3.

An important definition is that of the coroots. When a vector α has length
p

2
the two products (β ,α) and 〈β ,α〉 will coincide. With this in mind, for a root α,
the coroot α∨ is a rescaling of α about the length

p
2.

α∨ =
2α

(α,α)
.
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This also gives 〈β ,α〉= (β ,α∨).

As a consequence of the axioms of a root system, the set of reflections {sα :
α ∈ Φ} forms a group under composition called the Weyl group. This group
is generated by the reflections corresponding to simple roots which are called
simple reflections. Throughout this document we will use σ1, . . . ,σr to denote
the simple reflections corresponding to the simple roots α1, . . . ,αr . The reflections
give a natural action of the Weyl group on the Euclidean space in which the root
system is embedded. Fundamental domains of this action are referred to as Weyl
chambers and subspaces fixed by any reflection are called the walls of the Weyl
chambers. Occasionally we will study similar actions with the reflections about a
different point.

Walls of the Weyl chambers

Weyl chambers

Figure 2.3: The root system A2 with Weyl chambers and their walls highlighted.

As mentioned before, the fourth axiom of a root system is referred to as the
crystallographic condition. This condition strongly restricts the possible angles θ
that may occur between roots. Using the standard formula (α,β) = ‖α‖‖β‖ cos(θ )
we may rewrite the angle between roots as 〈α,β〉〈β ,α〉 = 4 cos2(θ ). Table 2.1 lists
the possible angles that may occur such that the roots match the crystallographic
condition. Between simple roots the angles will be in the range π/2≤ θ < π.

Table 2.1: Angles between roots and corresponding Dynkin edges.

〈α,β〉〈β ,α〉 Possible angles Dynkin edge
0 π/2 βα

1 π/3,2π/3 βα

2 π/4,3π/4 βα

3 π/6,5π/6 βα

4 0,π

The information in a root system is contained in the angles between the roots.
In particular, to describe the system we need to know the angles between any
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pair of simple roots. This information is frequently encoded in two ways, by the
Dynkin diagram and by the Cartan matrix.

The Dynkin diagram is a graph with a vertex for each simple root. Edges between
these vertices indicate the angle between the two corresponding simple roots. An
angle of π/2 is indicated with no edge, 2π/3 by one edge, 3π/4 by two edges
and 5π/6 by three edges. If the roots are of different lengths, then an arrow is
drawn pointing towards the simple root of smaller length.

21 2 31

Figure 2.4: The Dynkin diagrams of the root systems G2 and B3.

The Cartan matrix contains the same information as the Dynkin diagram. This
is the matrix given by C =

�

〈αi ,α j〉
�

1≤i, j≤r
. Recall that r is the rank of the root

system, so the elements of the Cartan matrix cover every pair of simple roots.







2 −1 0
−1 2 −2
0 −1 2







Figure 2.5: The Cartan matrix for the root system B3.

The Cartan matrix, Dynkin diagram and standard embedding of the classical
root systems can be found in Appendix A.

New root systems may be constructed from old ones through the direct sum
of the Euclidean spaces which contain them. Conversely, if a root system can be
divided into two sets which are pairwise orthogonal, it may be split up into two
smaller systems. In the Dynkin diagram this occurs as disconnected components
of the graph and in the Cartan matrix as block matrices along the diagonal. A root
system which cannot be split in this manner is called irreducible. These irreducible
root systems turn out to be in one to one correspondence with the simple Lie
algebras.

An important result is the classification of irreducible root systems. They fall into
four infinite families, An, Bn, Cn and Dn and five exceptional cases, E6, E7, E8, F4
and G2.

Of equal interest to representation theory are the integral weights. These are
the points µ in E for which 〈µ,α〉 ∈ Z for all α ∈ Φ. Many sets of weights form a
basis of E with a particularly useful one given by the fundamental weights. These
are the r weights Λi defined for a choice of simple system by 〈Λi ,α j〉= δi, j . Here
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δi, j is the Kronecker delta,

δi, j =

¨

1 if i = j
0 otherwise.

The set of all weights is an integer lattice over the fundamental weights.

α2

Λ1

Λ2

α1

Figure 2.6: A section of the weight lattice for the root system A2.

A useful element of the weight lattice is the Weyl vector ρ, half the sum of the
positive roots or equivalently the sum of the fundamental weights.

ρ =
1

2

∑

α∈Φ+
α=

r
∑

i=1

Λi

The fundamental weights are in the walls of a Weyl chamber since by definition
they are orthogonal to all but one simple root. We also highlight a single Weyl
chamber that is ‘maximal’ in the direction of the fundamental weights. Writing a
weight µ as,

µ=
r
∑

i=1

µiΛi ,

the dominant chamber is the Weyl chamber formed from the µ with µi > 0 for all
i.

The fundamental weights form a basis for E. Writing µ over the fundamental
weights as before we have

µ=
n
∑

i=1

µiΛi

13



α2

Λ1

ρ
Λ2

α1

Figure 2.7: The weight lattice for the root system B2 with the Weyl vector, domi-
nant chamber and walls of the Weyl chambers shown.

so that by 〈Λi ,α j〉= δi, j there holds

〈µ,α j〉= µ j .

That is 〈µ,α j〉 gives the coordinate of µ in Λ j . In particular the simple roots can
be expressed as a sum over the fundamental weights with coefficients given by
the Cartan matrix. Similarly, the fundamental weights may be expressed in terms
of the simple roots using the rows of C−1.

The simple reflections, which generate the Weyl group, are particularly easy to
describe when they act on points in the weight lattice. Since 〈Λi ,α j〉= δi, j, the
reflection of a fundamental weight leaves it unchanged unless i = j. In that case
sαi
(Λi) = Λi − 〈Λi ,αi〉αi = Λi − αi. So for a general weight µ =

∑n
i=1µiΛi and

any αi ∈∆ we have,

sαi

�

µ
�

= µ−µiαi .
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2.4 Highest weight modules

The reason for introducing root systems and weight lattices in the previous section
is that they arise in the study of representations of simple Lie algebras. In
particular we are interested in representations indexed by a unique highest weight
vector. This class of representation includes the irreducible finite-dimensional
representations. In highest weight modules, roots and weights completely describe
the module. Weights will give the vector space structure of the representation and
roots will tell us how the Lie algebra acts on the module.

Roots and weights of a semisimple Lie algebra

To develop root systems in this context we need to introduce a very important
object, the Cartan subalgebra. Given a lie algebra L and a subalgebra H ⊆ L, we
define the idealiser of H to be I(H),

I(H) = {x ∈ L : [y, x] ∈ H ∀y ∈ H}.

With this definition I(H) is the largest subalgebra of L containing H as an ideal,
hence the terminology idealiser.

We say that a subalgebra h of L is a Cartan subalgebra if h is nilpotent and
h= I(h).

For semisimple Lie algebras we often talk instead about a maximal toral subal-
gebra. For a semisimple Lie algebra g, a subalgebra is toral if it consists only of
elements which act diagonally. A maximal toral subalgebra h is a toral subalgebra
not contained in any other. That is h ⊂ H ⊆ g implies that H is not toral. For
semisimple Lie algebras, Cartan subalgebras and maximal toral subalgebras are
equivalent.

Importantly Cartan subalgebras exist and are unique in the sense that any two
differ only by an automorphism of the Lie algebra. Furthermore for semisimple
Lie algebras they are abelian, [h,h] = 0.

Let g be a semisimple Lie algebra. Suppose that V is a g-module with a corre-
sponding action of g on V . Consider the restriction of this action to an action of h
on V . This makes V into an h-module.

By definition, the elements of h all act diagonally on V , so for each element of
h we may decompose V into a direct sum of eigenspaces. Now h is abelian so
the elements of h commute and therefore are simultaneously diagonalisable, i.e.,
have common eigenspaces. Hence it makes sense to talk about eigenspaces for
the action of h on V .

In contrast, the eigenvalues need not be common among elements of h. Instead
we introduce an ‘eigenvalue function’. This is a function λ in the dual space of the
Cartan subalgebra, λ ∈ h∗. The function λ is associated to a particular eigenspace
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and maps each element of h to its eigenvalue. For any λ ∈ h∗ we define the weight
space,

V (λ) = {v ∈ V : h · v = λ(h)v}.

When V (λ) 6= 0 we call λ a weight of the module. The dimension of the weight
space is referred to as the multiplicity of the weight.

Since V decomposes into weight spaces, once we know the weights we know
the space V . To complete the module, what remains is to determine the action of
the Lie algebra. This is where the roots come in to play.

Recall from Section 2.2 the adjoint representation

adx : L→ L

which is defined by

adx(y) = [x , y].

This gives L itself as an L-module.

Following the weight construction by restricting the adjoint representation to an
h-module we get a decomposition of g into weight spaces. One of these weight
spaces, with weight 0 is h itself. For this particular representation the nonzero
weights are called roots and it gives rise to the Cartan decomposition,

g= h⊕
⊕

α∈Φ
g(α).

The roots identified through this decomposition form a root system in the sense of
Section 2.3.

As alluded to previously, the roots describe the action of the module. From the
Cartan decomposition, we know that g is generated by the root spaces and the
Cartan subalgebra itself. Consider the weight space decomposition of a g-module
V . From the definition of weight space we know that h maps each weight space
to itself. The question remains; how do elements from the root spaces act on
the weight spaces? This is solved by what Fulton and Harris [6] refer to as the
‘fundamental calculation’. For x , v and h, elements of the root space, weight space
and Cartan subalgebra respectively we have,

[h, x] · v = h · (x · v)− x · (h · v)
⇒ h · (x · v) = x · (h · v) + [h, x] · v.

Now since v is in a weight space, h · v = λ(h)v. Similarly, as x is in a root space
and [h, x] is the adjoint action of h on x we have [h, x] = α(h)x . Together these
give

h · x · v = (λ(h) +α(h)) x · v.
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So elements of the root space g(α) with root α map the weight space V (λ) into
the weight space V (λ+α). This describes the action of the module.

Before proceeding to discuss modules generated by a weight, it is interesting to
identify the Euclidean space in which the root system is embedded. This is h∗R, the
subspace of h∗ formed from real linear combinations of the roots.

The Euclidean inner product arises from the Killing form, a product defined over
g. This is a symmetric bilinear form 〈·, ·〉 which is again related to the adjoint
representation,

〈·, ·〉 : g× g→ C
〈x , y〉= tr(adxady).

This form is nondegenerate, even when restricted to h (Cartan’s criterion). So
we use it to define a bijection between h and h∗ by x 7→ fx(y) = 〈x , y〉. We then
expand the Killing form to a product on h∗ by defining ( fx , f y) = 〈x , y〉. Over h∗R
this is a Euclidean inner product which gives rise to the Euclidean space containing
the root system.

Highest weight modules

Once a particular base of the root system has been chosen we inherit from the
dominant chamber a ‘positive’ direction in the space of weights. This positive
direction corresponds to greater coefficients in the fundamental weights. A weight
µ in a module is called highest if it is furtherest in this direction amongst all the
weights. Equivalently such a weight is annihilated by the action of every root
space corresponding to a positive root. That is, V (µ+α) = 0 for all α ∈ Φ+.

We are interested here in representations of g generated by a particular highest
weight vector µ. This class of representations includes the finite dimensional
irreducible representations. For these the weights are integral. That is, they are
weights in the sense of Section 2.3. For the remainder of this section we assume
all weights are integral.

For any integral highest weight vector µ in the dominant Weyl chamber (includ-
ing its walls) there is a unique irreducible highest weight module. We notate this
by Vµ. The weights of this module are all those points in the weight lattice that
may be obtained by subtracting simple roots from µ with the condition that the
resulting set of weights must be invariant under the reflections of the Weyl group.
It is perhaps simpler to describe these weights as being contained in a convex hull
formed by the orbit of the highest weight µ.

The Weyl orbit of a weight µ together with the weights between adjacent points
on this orbit is called a shell. To restate, the convex hull is then exactly the shell
which contains the highest weight. The multiplicity of the weights is invariant
among each shell.

17



Given a root system and the set of weights obtained for a highest weight module
we almost know the entire module. Each simple root describes the action of the
generators of the Lie algebra on all of the weight spaces. What we do not yet know
is the multiplicities of the weights, that is, the dimension of the weight spaces.

Before proceeding with these multiplicities, we give an example.

Example 2.4.1. Consider the irreducible module of sl3 with highest weight µ=
3Λ1+ 2Λ2. Here the root system is two-dimensional so we may draw the weight
lattice in Figure 2.8. Each slide demonstrates a stage of the calculation. In the
first slide we have drawn the highest weight µ.

α2

Λ1

Λ2

α1

α2

Λ1

Λ2

α1

α2

Λ1

Λ2

α1

α2 µ

µµ

µ

Λ1

Λ2

α1

Figure 2.8: The highest weight module Vµ.

Then we consider the orbit of µ under the Weyl group. This orbit is shown in
black in the second slide with the intermediate weights that complete the shell
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shown in purple. To complete the full set of weights we then add all points
obtained by root subtractions (slide 3). Finally, although we do not yet in this
exposition have a method for finding these, the weight multiplicities are indicated
in the last slide. In these weight diagrams circles around the individual weights
are used to indicate their multiplicity.

There are various ways to determine the weight multiplicities. Given a complete
description of the modules corresponding to the fundamental weights and a
technique for finding tensor product decompositions (Section 2.6) , it is possible
to recursively describe the weight multiplicities.

When decomposing the tensor product of Vµ and Vν , the highest weight module
Vµ+ν will always occur. The direct sum of two modules presents itself in the weight
lattice as an overlapping (with multiplicity) of the weights in the modules. Hence
by subtracting the weights of each of the smaller representations that occur in the
tensor product Vµ⊗ Vν , we will eventually be left with just the weights of Vµ+ν .

This process has been abstracted to create Freudenthal’s formula [6]. As an
alternative to this procedure, the Weyl character formula of Section 2.5 may also
be used to determine the weight multiplicities.

Weights in a tensor product

Given vector spaces V and W , the tensor product V ⊗W is spanned by the vectors
vi ⊗ w j where vi and w j range over the basis vectors of V and W respectively.
Suppose that v is an eigenvector of V with eigenvalue λv and similarly w is an
eigenvector of W with eigenvalue λw . Then v⊗w will be an eigenvector of V ⊗W
with corresponding eigenvalue λv +λw . Thus the weights of the tensor product of
two module will be the sum set of their individual weights.

For example in A2, the modules VΛ1
and VΛ2

have weights

{Λ1,Λ2−Λ1,−Λ2} and {Λ2,Λ1−Λ2,−Λ1}.

So their tensor product VΛ1
⊗ VΛ2

will have weights

{Λ1+Λ2, 2Λ1−Λ2, 0, 2Λ2−Λ1, 0,Λ2− 2Λ1, 0,Λ1− 2Λ2,−Λ1−Λ2}.

This tells us that in the direct sum decomposition of Vµ⊗ Vν , the highest weight
module Vµ+ν will always occur. Furthermore it can be shown that any highest
weight module which occurs will be labelled by some λ of the form,

λ= µ+ ν −
n
∑

i=1

kiαi .

19



2.5 Weyl characters

A highest weight module contains a set of weights. As seen in Section 2.4, these
weights give the structure of the module. The formal Weyl character, χ, presents
this information as a function attached to each module. The Weyl character is
defined by,

χ(Vλ) =
∑

µ

Kλµeµ

where the sum ranges over all the weights µ of the highest weight module Vλ.
Here Kλµ is the multiplicity of the weight µ in the irreducible module of highest
weight λ.

A useful property of the Weyl character is that direct sums and tensor products
of modules correspond to sums and products of characters.

χVµ⊕Vν = χVµ +χVν

χVµ⊗Vν = χVµ ·χVν

One disadvantage of the Weyl characters is that finding them requires summing
over the weights of a representation with multiplicity. Calculating these is not al-
ways an easy task. Fortunately there exists a remarkable formula that circumvents
this, the Weyl character formula. This formula uses explicitly only the highest
weight vector and the Weyl group of the Lie algebra. The function l(w) is used to
denote the smallest length of an element of the Weyl group expressed as a product
of the simple reflections:

χ(Vλ) =

∑

w∈W
(−1)l(w)ew(λ+ρ)−ρ

∏

α>0

�

1− e−α
� .

As an example, the characters for modules of sln are the Schur functions. These
are described with greater detail in Section 2.6 when we introduce the Littlewood–
Richardson rule.
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2.6 Tensor product algorithms

One of the most fundamental tools used in this research is the decomposition of
the tensor product of two highest weight modules into a direct sum of irreducible
modules. Two algorithms provide neat methods to do this. The first, Klimyk’s
rule, is applicable to all root systems and is described geometrically in the weight
lattice. For sln there is a very elegant description called the Littlewood–Richardson
rule that uses tableaux instead of weights.

Klimyk’s rule

An explicit formula for determining the direct sum decomposition of two highest
weight modules is given by Klimyk’s rule. This rule requires interpreting repre-
sentations labelled by non-dominant weights. We define a new action of the Weyl
group upon the weight lattice by w ·λ= w(λ+ρ)−ρ for each element w of the
Weyl group. This action corresponds to the typical reflections of the Weyl group
centered on the negative Weyl vector. In such a scenario the Weyl chambers and
walls are redefined to match this new action.

Representations labelled by a non-dominant weight are interpreted with the
shifted action describe above. For any weight µ, either µ is in the wall of a Weyl
chamber under this action or there is a unique element w in the Weyl group such
that w ·µ is in the dominant chamber. In the first case, Vµ = 0 and in the second
Vµ = (−1)l(w)V (w ·µ).

With these two concepts, Klimyk’s rule may be expressed as,

Vµ⊗ Vν =
⊕

ν ′

Kνν ′V (µ+ ν
′)

where ν ′ ranges over the weights of ν and again Kνν ′ is the multiplicity of ν ′ in ν .
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Example 2.6.1. For these examples it is easiest to study representations of sl3.
Consider the module Vν ⊗ Vν for ν = Λ1 +Λ2. The weights of ν , over which ν ′

ranges are shown on the weight lattice in Figure 2.9. Adding ν to each of the

0

Λ2

Λ1

Figure 2.9: Weights of the module in example 1.

weights results in the points shown in Figure 2.10. Note that lines are drawn
through −ρ parallel to the fundamental weights. The action of the Weyl group
described above corresponds to reflection about these lines. In this example two
of the weights occur on the walls of the chamber and hence do not contribute
while all others are in the positive chamber. Thus the decomposition is

VΛ1+Λ2
⊗ VΛ1+Λ2

= V0⊕ 2VΛ1+Λ2
⊕ V3Λ1

⊕ V3Λ2
⊕ V2Λ1+2Λ2

.

−ρ

Λ1

Λ2

ν

0

Figure 2.10: Diagram depicting Klimyk’s rule.

Example 2.6.2. Let again g = sl3 and take the tensor product Vµ ⊗ Vν where
µ = Λ1 + 2Λ2 and ν = 2Λ1 + Λ2. The weights of ν are shown on the lattice
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Λ1

Λ2

0

Figure 2.11: Weights of the module in example 2.

in Figure 2.11. Adding µ to each of the weights results in the points shown in
Figure 2.12. Observe here that three of the weights occur in the walls of the
chamber and hence do not contribute. There is a single weight outside the positive
chamber. Acting on this weight by σ1 with length one places it in the dominant
chamber. This weight then cancels with one of the two weights already there.
Thus the decomposition is

Vµ⊗ Vν = V0⊕ 2VΛ1+Λ2
⊕ V3Λ1

⊕ V3Λ2
⊕ 2V2Λ1+2Λ2

⊕ V4Λ1+Λ2
⊕ VΛ1+4Λ2

⊕ Vµ+ν .

Λ1

Λ2

ν

−ρ

0

Figure 2.12: Diagram depicting Klimyk’s rule.
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Littlewood–Richardson rule

For representations of the Lie algebra sln, the tensor product decomposition has
a particularly elegant description given by the Littlewood–Richardson rule. This
rule uses representations labelled by partitions rather than weights. The notation
between the two is identical but hopefully clear in context.

A partition λ = (λ1,λ2, . . . ) is a weakly deceasing sequence of nonnegative
integers such that only finitely many λi are strictly positive. It is helpful to identify
a partition with its diagram given by {(x , y) ∈ Z2 : x ≤ λy}. We think of this as
stacking rows of boxes of length λi and traditionally the diagram is drawn upside-
down. For example, Figure 2.13 (left) corresponds to the partition (6,5,5,3,1).

5

3

4

2

5

3

4

2

5

6

4

5

6

4 4

6

4

2

3

1

Figure 2.13: Examples of a partition and a semistandard tableau.

A tableau is a partition together with a filling of the boxes with positive integers.
When using these objects to label representations of sln the boxes may only be
filled with the integers 1, . . . , n. A tableau is called semistandard if the contents
are weakly increasing across the rows and strictly increasing down the columns.
Figure 2.13 (right) is a semistandard tableau. The reverse lattice word condition
is the requirement that, as a tableau is read right to left, top to bottom, every
partial word formed contains at least as many i as i+ 1 for all i.

Given two partitions λ and µ we say that µ is contained in λ if µi ≤ λi for all i.
This is notated by µ⊆ λ. Assuming µ⊆ λ, the skew tableau λ/µ is given by the
set subtraction of the diagram of µ from that of λ.

λ λ/µµ

Figure 2.14: An example of a skew partition.

For a tableau, we define the contents to be 1n(1)2n(2)3n(3) . . . where n(i) is the
number of i’s in the filling.
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Irreducible representations of sln are commonly labelled by partitions through
the use of Schur functions. These Schur functions are the specialisation of the
Weyl character for sln. Before exploring the Schur functions more, we should state
the Littlewood–Richardson rule.

If sµ and sν are Schur functions labelled by partitions µ and ν , then the product
sµ · sν is given by

sµ · sν =
∑

λ

cλµν sλ

such that µ ⊆ λ and hence λ/µ is a skew partition. The coefficient cλµν is the
number of semistandard fillings of λ/µ which satisfy the reverse lattice word
condition and the contents of the filling correspond to ν . By this we mean
n(i) = νi . Since the product of Weyl characters corresponds to the tensor product
of representations, this rule gives the tensor product decomposition for highest
weight modules of sln.

The Schur functions are symmetric homogeneous polynomials which form a
basis for the ring of symmetric polynomials. They are usually defined with the
following determinant formula,

sλ =
det

1≤i, j≤n

�

x
λ j+n− j
i

�

∏

1≤i< j≤n
(x i − x j)

.

Here λ is a partition. If we write x i = eεi and assume x1 . . . xn = 1, this description
of the Schur functions matches the Weyl character formula.

There is a simple bijection between the labelling of representations by partitions
and the labelling by highest dominant weights. Suppose that sλ is a Schur function
labelled by the partition λ. Then the weight corresponding to the partition λ is
(λ1−λ2,λ2−λ3, . . . ). This gives the coordinates of the highest weight vector.

λ4−λ5

λ3−λ4

λ1−λ2

λ5−λ6

Figure 2.15: The bijection between partitions and weights.
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An alternative combinatorial definition of the Schur functions may be given by a
sum over tableaux. For a semistandard tableau T of shape λ, form the monomial

x T =
n
∏

i=1

xn(i)
i .

Then the Schur function is the sum of these monomials over all semistandard
tableaux of shape λ,

sλ =
∑

T

x T .

As an example, the Schur function in three variables labelled by the partition
(2,1) is given by summing over the tableaux in Figure 2.16. This gives s3

(2,1) =
x2

1 x2+ x2
1 x3+ x1 x2

2 + 2(x1 x2 x3) + x1 x2
3 + x2

2 x3+ x2 x2
3 .

2
1 1

3
1 1

2
1 2

3
1 2

2
1 3

3
1 3

3
2 2

3
2 3

Figure 2.16: An example of a schur function.

When we use partitions to label representations of sln we have to restrict the
number of rows. If the partition has more than n rows it can have no semistandard
filling with the numbers 1, . . . , n. Hence such partitions cannot label representa-
tions of sln and so we ignore them in the Littlewood–Richardson rule. Additionally
if a column has height exactly n then there is only a single possible way to fill
this with the numbers 1, . . . , n that is strictly increasing. So these columns do not
contain any additional information and hence we ignore them also. This is equiva-
lent to making the identification x1 . . . xn = 1 in the corresponding Schur function.
Since the Schur functions are homogeneous, if we make this identification no
information is lost.

The Littlewood–Richardson rule completely describes the tensor product multi-
plicities and hence completely describes the tensor product decomposition. In our
work we often want to view this rule as an algorithm for giving the direct sum
decomposition. In this case the rule is interpreted as stacking boxes with content
ν on top of the partition µ. Then the decomposition is simply given by all such
stackings that are semistandard and satisfy the reverse lattice word condition.
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Example 2.6.3. To demonstrate the Littlewood–Richardson rule, we echo the
examples from the previous section on Klimyk’s formula. The weight Λ1 +Λ2
corresponds to the partition µ = ν = (2,1). Thus we must find all valid skew
tableau λ/µ which have contents 122. These are given in Figure 2.17.

=

1 2
1

21
1

2
11

2

11

2
1

1

1
2

1

1
2

1

1
2

1

Figure 2.17: A first example of the Littlewood–Richardson rule.

If we restrict to sl3 then the decomposition in this example is exactly that
obtained through Klimyk’s formula.

Example 2.6.4. The second example from before may also be repeated. The
weight µ = Λ1 + 2Λ2 corresponds to the partition (3,2) and ν = 2Λ1 + Λ2
corresponds to (3,1). Thus we must find all valid skew tableau λ/µ which have
contents 132. These are given in Figure 2.18.

2
11 1

2

11 1
2

11
1

2

11
1

1
2

1

12

11

1
2

11

1
21
1

1

=
2

1
1

1
2

1
1

1
2

1

1

1
2

1

1

121
1

1
2

1
1

1

Figure 2.18: A second example of the Littlewood–Richardson rule.

If we restrict to sl3 then the decomposition in this example is exactly that
obtained through Klimyk’s formula.
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Research
problem 3

The central question studied in this thesis is about evaluations of integrals defined
for highest weights in a tensor product decomposition. In particular Mukhin and
Varchenko made in their paper [11] three conjectures about a family of integrals.
These conjectures remain open. Here we state the integral, the first conjecture
and provide a brief overview of current progress on the problem.

3.1 The phase integral

Consider two highest weight modules of a simple Lie algebra g, labelled by µ and
ν . Suppose that µ+ ν −

∑n
i=1 kiαi is a particular highest weight in the direct sum

decomposition of the tensor product Vµ ⊗ Vλ. The phase integral is obtained by
attaching ki integration variables to each simple root αi and has the form,

∫







k
∏

i=1

t
−(µ,αti

)
i (1− t i)

−(ν ,αti
)
∏

1≤i< j≤k

|t i − t j|
(αti

,αt j
)







γ

d t1 . . . d tk.

Here t i are the integration variables, αt i
is the root to which t i is attached and γ is

an arbitrary complex number subject to convergence conditions. It is convenient
to think of this attachment of integration variables in the Dynkin diagram.

α2 α3

α5

α4

α1

k2 k3

kn

k4

k1

Figure 3.1: The Dynkin diagram of D5 with ki paired to each simple root.

We have not specified the domain of integration as it is not known in general.
Identifying this domain is one of the key requirements for the evaluation, although
not one which we studied extensively. The original conjecture had a constraint on
this domain but it has since been shown that that was too restrictive.
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3.2 Conjectures about the phase integral

Mukhin and Varchenko [11] made three conjectures about the phase integral. We
are most interested in the first of these,

Conjecture 1. If the weight µ+ ν −
∑n

i=1 kiαi occurs with multiplicity one in the
tensor product decomposition then the phase integral can be evaluated as a ratio
of gamma functions.

3.3 The gamma function

We are interested in evaluating integrals as a ratio of Euler gamma functions. The
gamma function is a continuous and convex extension of the integer factorial to
the complex numbers. It is defined by,

Γ(z+ 1) =

∫ ∞

0

tze−t d t Re(z)>−1.

For this function we have,

Γ(1) =

∫ ∞

0

e−t d t = 1

and,

Γ(z+ 1) =

∫ ∞

0

tze−t d t

= z

∫

tz−1e−t d t

= zΓ(z).

That is, the gamma function satisfies the recurrence relation Γ(z + 1) = zΓ(z) and
Γ(1) = 1. On integers this then gives Γ(n+ 1) = n!.

3.4 Euler beta integral

When the phase integral from before has a single integration variable it reduces to
the Euler beta integral.

∫ 1

0

tα−1(1− t)β−1 d t =
Γ(α)Γ(β)
Γ(α+ β)

Re(α), Re(β)> 0.

This integral indeed has an evaluation as a ratio of gamma functions. A proof of
this result follows.

Γ(α)Γ(β) =

∫ ∞

0

∫ ∞

0

e−u−veα−1vβ−1 dudv.
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Introducing the new integration variables z and t with u = zt, v = z(A− t) and
Jacobian determinant Az results in,

Γ(α)Γ(β) =

∫ ∞

0

∫ A

0

e−zt−z(A−t)(zt)α−1(z(A− t))β−1Az d tdz

= A

∫ ∞

0

e−Azzα+β−1 dz

∫ A

0

tα−1(A− t)β−1 d t

= A1−α−βΓ(α+ β)

∫ A

0

tα−1(A− t)β−1 d t.

Setting A= 1 we arrive at,

∫ 1

0

tα−1(1− t)β−1 d t =
Γ(α)Γ(β)
Γ(α+ β)

.

The use of A here instead of simply starting with the interval [0, 1] is to foreshadow
a technique used in Mukhin and Varchenko’s paper.

3.5 Selberg’s integral

The second more complicated example that we give in this section is the Selberg
integral. When k is one, this is precisely the Euler beta integral from before. A
proof of this integral may be found in Selberg’s original paper [12] or with a
different approach in work by Anderson [1].

∫

0<t1<···<tk<1

k
∏

i=1

tα−1
i (1− t i)

β−1
∏

1≤i< j≤k

|t i − t j|2γ d t1 . . . d tk =

k−1
∏

i=0

Γ(α+ iγ)Γ(β + iγ)Γ((i+ 1)γ)
Γ(α+ β + (i+ k− 1)γ)Γ(γ)

3.6 State of the conjecture

This section gives an overview of progress so far on the conjecture. Remarkably-
few cases of the conjecture have been evaluated and even the simplest of these is
difficult.

Original evidence

In the same paper where Mukhin and Varchenko made their conjecture they
observed that, for the simple Lie algebra sl2, the phase integral corresponds to Sel-
berg’s integral. As seen earlier this integral evaluates as a ratio of gamma functions
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and supports the conjecture. Note that every tensor product of irreducible modules
in sl2 is multiplicity free. This is apparent from the Littlewood–Richardson rule.

The authors then provided an evaluation of the integral for tensor products
with the standard representation of sln. Any irreducible module that occurs in
the tensor product decomposition of Vλ⊗ VΛ1

will occur without multiplicity. To
see this, consider the Littlewood–Richardson rule when one partition is a single
box. Their method was to integrate each variable with the Euler beta integral and
develop a recursive formula for the evaluation.

Over the integration domain 0< t1 < t2 < · · ·< tk < 1 the integral for this case
has the form,

∫

0<t1<···<tk<1

tα1
1 (1− t1)

β1

n
∏

j=2

t
α j

j (t j − t j−1)
β j d t1 . . . d tk.

Then using the evaluation of the beta function with A= t j−1 we may recursively
integrate each variable, starting from j = n and decreasing.

Each result in the following sections may be though of as a generalisation of one
of Mukhin and Varchenko’s original twoevaluations.

Extensions using Macdonald polynomials

Using the theory of Macdonald polynomials, Warnaar [17,18] was able to evaluate
the phase integral for An−1 in more general situations.

The Pieri rule is a method for computing the decomposition of tensor products
with powers of the standard representation of sln. In the language of Littlewood–
Richardson this may be stated as a tensor product with a single row of any length.
Elements that occur in the decomposition are all the skew tableau which are
horizontal strips. By this we mean that no two boxes share a column.

The first of Warnaar’s results was to evaluate the phase integral for the Pieri rule.
That is, for any n, the integral corresponding to a module in the decomposition of
Vλ⊗ VmΛ1

. Here he was able to give an explicit description of the ki values which
could occur in these decompositions. This allowed the integral to be evaluated in
each of these cases.

His second major result was a complete evaluation of an integral for some more
general representations in the Lie algebra sl3. While this integral is extremely
similar to the phase integral, the exact modules and tensor products to which it
corresponds are unknown.

The standard representation in other root systems

Mimachi and Takamura [10] evaluated a particular phase integral for each of
the root systems Bn, Cn and Dn. The integral corresponded to the trivial repre-
sentation occurring in the direct sum decomposition of the tensor square of the
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standard representation, VΛ1
⊗VΛ1

. They obtained these results by extracting a two
dimensional Selberg integral and using this to express the formula recursively.
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Further results 4
This chapter contains various attempts to progress the state of the Mukhin–
Varchenko conjecture.

4.1 Multiplicity-free tensor products

The Mukhin–Varchenko conjecture [11] is concerned with triples of weights µ,ν
and λ with λ = µ+ν−

∑

kiαi under the further condition that λ must occur with
multiplicity one in the tensor product decomposition of Vµ⊗Vν . A more restrictive
question is to ask for pairs µ and ν for which every irreducible module in this
decomposition has multiplicity one. These pairs are called multiplicity-free tensor
products and have been completely classified by Stembridge in two papers [14,15].
However Stembridge’s papers do not contain an explicit description of the weights
λ which occur in these multiplicity-free tensor products. These weights would
give the values ki .

To state the phase integral, let alone evaluate it, requires knowledge of the ki
values. With this in mind we would like to find explicit descriptions of these ki
values in situations where, according to the conjecture, the integral should have a
gamma function evaluation. An excellent place to start is with the multiplicity-free
tensor products.

4.2 Multiplicity-free tensor products in An−1

With the root system An−1 we have the advantage of the Littlewood–Richardson
rule to aid in finding the ki values. Unfortunately while the rule itself gives
the tensor product decomposition, it does not explicitly provide ki values. To
determine these we first reinterpret root subtraction as a shifting of boxes in
partitions.

The multiplicity-free tensor products of partitions identified by Stembridge are,

� A row or column with any partition (Pieri’s rule).

� Two rectangles.

� A fat hook with a two-line rectangle.
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� A near rectangle with a rectangle.

Rows, columns and rectangles are partitions of those shapes. A fat hook is a
partition with exactly two different row lengths (or equivalently column heights).
A near rectangle is a partition from which the removal of one row or column
results in a rectangle. We will describe the ki values corresponding to all but the
last of these cases.

Figure 4.1: A fat hook and two near rectangles.

The challenge in describing the ki values is twofold. First we describe the
possible box shifts in the partition diagram that match the Littlewood–Richardson
rule. This corresponds to the tensor product of the representations that the
partitions label (Section 2.6). To apply these inequalities to representations of sln
we must then restrict the resulting partitions to height n and make the necessary
corrections in the ki values.

Root subtraction and box shifting

To assist in the description of ki values for the multiplicity-free An−1 tensor
products, we reinterpret root subtraction as box shifting. This allows us to use the
elegant description of the tensor product decomposition given by the Littlewood–
Richardson rule.

Suppose that a box in a partition is moved down from one row to the next. This
requires that there is a box to shift and a place to put the box that results in a
valid partition. Moving a box from row i to row i+ 1 adds one to the lengths of
the protrusions in row i−1 and row i+1. It also subtracts two from the length of
the protrusion in row i. This is illustrated in Figure 4.2.

Using the bijection between partitions and weights this impact is described by
the following transformations,

µi−1 7→ µi−1+ 1

µi 7→ µi − 2

µi+1 7→ µi+1+ 1.

In the extreme cases, the transformations are slightly different as µ0 and µn+1
are not defined. Simply remove these and the interpretation is consistent. This
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µi µi−1µi+1

µi − 2 µi−2+ 1µi+1+ 1

Figure 4.2: The effect of box shifting on the weight bijection.

removal matches the difference in the first and last rows of the Cartan matrix for
An−1.

This transformation of weights corresponds precisely to the subtraction of the
root αi in the weight lattice. To state this explicitly, translation of a box from
row i to row i+ 1 in a partition is equivalent to subtracting the root αi from the
corresponding weight. Similarly, movement from row i to row j with i < j is the
subtraction of the (not necessarily simple) root (αi + · · ·+α j−1).

It is worth noting that the root subtractions that leave the dominant chamber
are precisely those box shifts that would not result in a valid partition.

Tensor products and box shifting

As seen earlier, in the language of weights the tensor product Vµ⊗ Vν decomposes
into elements of the form Vλ with λ = µ+ ν −

∑n
i=1 kiαi. We are interested in

describing these ki values. The weight µ+ν corresponds to the pairwise sum of µ
and ν as partitions. Such a sum is demonstrated in Figure 4.3.

=+

Figure 4.3: The sum of two partitions.

With the reinterpretation of root subtraction as box shifting, finding the ki values
becomes a problem of determining which box shifts from µ+ ν result in valid
semistandard skew tableau that satisfy the reverse lattice word condition. An
example of this for two small partitions is given in Figure 4.4.
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Figure 4.4: How ki values occur in the tensor product of partitions.

Tensor product with a single row

This product is exactly the Pieri rule and the phase integral has been evaluated
in this scenario [18]. Nonetheless, this is also the simplest case of a multiplicity-
free tensor product and provides an opportunity to demonstrate the common
techniques of this section.

Consider shifting boxes from µ+ ν where ν is (ν1), a single row. Certainly no
more boxes may be shifted than are in ν and by the semistandard condition no
more boxes may be shifted than the width of µ. Thus k1 ≤ min{µ1,ν1}. The
number of boxes deposited in a row, say row i, is given by the difference between
the number shifted in and the number shifted out, ki − ki+1. This difference may
be no more that the number of available places in this row, µi −µi+1, otherwise
the result either voids semistandardness or is not a tableau. This gives the set of
inequalities,

k1 ≤min{µ1,ν1}
0≤ ki − ki+1 ≤ µi −µi+1.

Note that the µi here label partitions. The value µi − µi+1 is then precisely the
coefficient of Λi in the corresponding weight.

The restriction to sln may be made by setting kn = 0.

Tensor product with a single column

Let µ be an arbitrary partition and ν be a single column of height t, ν = (1t).
Then from the semistandard and reverse-lattice-word conditions λ will occur in
the decomposition only if λ/µ is a vertical strip. A vertical strip is a skew tableau
in which no two boxes share a row.

The construction here is more difficult to describe than the product with a
row. This is because the bijection between partitions and weights is inherently
connected to the horizontal structure of the partition, rather than the vertical.
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To describe the ki values, first consider moving all the boxes into a formal ‘row
zero’. Then move the boxes down the tableau accounting for the locations where
a box may potentially be deposited.

Figure 4.5: Describing the tensor product of a partition with a single column.

We use the values hi to list the number of boxes not placed by row i. To match
the artificial row, set h0 = t. Then a box may be deposited at a row if either the
partition has a shelf or a box had previously been deposited in the row below.
Furthermore only one box may be deposited in each row. This gives the inequality
0≤ hi − hi+1 ≤min{1, (ki−1− ki) + (µi −µi+1)}.

To convert from the h values to the desired k values we must account for the
shift into the formal row zero. This is done by adding i− t to each hi .

t

t − 2

t − 3

t − 1

4

2

1

3

Figure 4.6: Moving the column to the artificial ‘row 0’.

Together these two processes give the complete set of inequalities,

h0 = t, hl(µ)+t = 0

0≤ hi − hi+1 ≤min{1, (ki−1− ki) + (µi −µi+1)}
ki = hi − t + i for 0≤ i ≤ t

ki = hi for i > t.
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To restrict this description, simply remove all sets of ki values for which kn ≥ 0.

Tensor product of two rectangles

Consider the tensor product of the representations labelled by µ = pΛr and
ν = qΛs. This corresponds to the product of two partitions which are rectangles of
widths p and q, and heights r and s respectively. We may assume by the symmetry
of the Littlewood–Richardson coefficients that s ≤ r.

p

r
s

λ◦

λ

q

Figure 4.7: A diagram depicting µ+ ν in the product of two rectangles.

Firstly we describe the partitions λ which may occur. Any resulting partition is
formed by removing a 180◦ rotated partition from the bottom right corner of ν in
µ+ ν and placing it below µ.

This follows since the semistandard condition forces any resulting skew tableau
to be strictly increasing vertically. As such no boxes may be shifted to the space
below ν . Furthermore the remaining unshifted boxes are still a partition, so the
section removed from ν is in the shape of a rotated tableau. The question is then;
how these may be placed above µ?

Since this is a multiplicity-free product it should be no surprise that there is
a unique way to do this. The reverse lattice word condition implies that each
element in the removed section must be read after the box directly above it.
Working through the columns of the removed section right to left and moving
them to the top of µ gives the unique placement. This is illustrated in Figure 4.8.

Next we use the weight lattice interpretation to develop ki values from this
combinatorial description. To do this, choose the partition λ to be removed from
ν ensuring that λi ≤min{p, q}. As demonstrated in Figure 4.9, consider the total
movement of boxes as the individual shifting of each row from µ+ ν to a row of
same width in the final partition.
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Figure 4.8: Positioning the cut out section of ν .

Figure 4.9: Determining the ki values.
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In terms of individual shifts this gives,

λ1(αs + · · ·+αr)

λ2(αs−1+ · · ·+αr+1)
...

λs(α1+ · · ·+αr+s−1)

Collecting like terms we find the coefficients for the simple roots.

k1 = kr+s−1 = λs

k2 = kr+s−2 = λs +λs−1

...

ks = · · ·= kr = λs + · · ·+λ1

Using the physical restrictions on the partition λ, this may be reduced to the set
of inequalities,

k1 = kq+s−1 ≤ k2 = kq+s−1 ≤ · · · ≤ ks = ks+1 = · · ·= kq

ki ≤ (min{p, q}) · i

These inequalities have a strong symmetry in them. This is perhaps most easily
seen in Figure 4.10.

k1+t kq+s−1−t

k1 ks kq kq+s−1

Figure 4.10: A fat hook and a two line rectangle.

As a partial verification, we check the limiting case where ν is a single row. Here
the rectangle rule reduces to k1 = k2 = · · · = kr ≤min{p, q}. This agrees with the
description already established.

To end this explanation we give an example. Suppose we have the product of
two squares, µ = (3,3,3) and ν = (2,2). Then the skew partitions which occur
and the corresponding ki values are shown in Figure 4.11.
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k1 = 0 k1 = 0, k2 = 1,

k3 = 1

k1 = 0, k2 = 2,

k3 = 2

k1 = 2, k2 = 4,

k3 = 4, k4 = 2

k1 = 1, k2 = 3,

k3 = 3, k4 = 1

k1 = 1, k2 = 2,

k3 = 2, k4 = 1

Figure 4.11: An example of the skew tableaux that occur in the product of two
rectangles.

Tensor product of a fat hook with a two-line rectangle

Consider the tensor product of the representations labelled by µ= pΛr + qΛs and
ν = tΛ2. This corresponds to a fat hook and a two-line rectangle.

We restrict the problem to fat hooks that are ‘big enough’, that is r ≥ 2 and
s− r ≥ 2. Note that the extreme cases not satisfying these inequalities are actually
near-rectangles and should be multiplicity-free when tensored with more general
ν . To ensure that the resulting shape is a partition boxes may only be placed in
three locations, on the ‘shelves’ (Figure 4.13) of the fat hook. The semistandard
condition prevents three boxes from sharing a single column so we may consider
each shelf independently.

The reverse lattice word condition requires that the far right shelf has no fewer
ones than twos and the far left shelf has no fewer twos than ones. The middle
shelf is unrestricted by this condition except that it must accommodate the boxes

p

s

r

q

t

Figure 4.12: A fat hook and a two line rectangle.
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from the other two. We can describe these observations in a combinatorial manner
with a five-parameter description. This description consists of two stages.

In the first stage the parameters b1 and b2 describe the base layout. To do this,
place height two rectangles of width b1 and b2 on shelves 2 and 3 respectively.
This leaves a rectangle of width t − b1− b2 on shelf 1.

The first stage covers every possible placement of the boxes containing a one. In
the second stage we describe the further shift of boxes containing a two. Twos may
be further moved from the first to second, second to third and first to third shelves
without voiding semistandardness. List the number of these shifts with x12, x23
and x13 respectively. The schematic in Figure 4.13 gives a visual representation of
this construction.

shelf 2

shelf 3

shelf 1

t − b1− b2

x23 x13

x12

b1

b2

Figure 4.13: The five parameter description of the fat hook shifts.

By observing the geometry of the partition, a set of inequalities arises for these
five parameters.

b1 ≤ p

b2 ≤ q

b1+ b2 ≤ t

x12+ x23 ≤ t − (b1+ b2)

x23 ≤ b1

x12 ≤ p− b1

x23+ x13 ≤ q− b2.

To find the weight lattice interpretation and the ki values we describe the shifts
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corresponding to each parameter.

b1 :[α1+ · · ·+αr], [α2+ · · ·+αr+1]

b2 :[α1+ · · ·+αs], [α2+ · · ·+αs+1]

x12 :[α2+ · · ·+αr]

x23 :[αr+2+ · · ·+αs]

x13 :[α2+ · · ·+αs].

Collecting coefficients then gives the following expressions for the ki ,

k1 = b1+ b2

k2, k3, . . . , kr = 2b1+ 2x23+ x12+ x13

kr+1 = b1+ 2b2+ x13

kr+2, . . . , ks = 2b2+ x23+ x13

ks+1 = b2.

Again to restrict this to representations of sln, simply remove all sets of ki values
where kn > 0.

Before finishing the section we give an example of the fat hook construction.
Let µ be the fat hook (3,3,1,1) and ν be the two line rectangle (3,3). There
are six possible base configurations given by (t − b1− b2, b1, b2) equal to each of
(3,0,0), (2,1,0), (1,2,0), (2,0,1), (0,2,1), (1,1,1). We demonstrate the further
shifts for two of these cases.

For b1 = 1 and b2 = 0 the possible shifts are given in Figure 4.14.

2

2 2
1

1 1

2

2

22

1

1 1

x13 = 1

2

2 2
1

1 1

x23 = 1

2

2
21

1 1

x12 = 1

2

2
21

1 1

x23 = 1
x12 = 1

Figure 4.14: Shifts for one of the base layouts in the fat hook product example.

For b1 = 2 and b2 = 0 the possible shifts are given in Figure 4.15.
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x23 = 1

2
22

1 1

1

x13 = 1

Figure 4.15: Shifts for another of the base layouts in the fat hook product example.

4.3 Lowest weights in a decomposition

In the Littlewood–Richardson rule, the subtraction of roots was interpreted as a
shifting of boxes to the left. Intuitively, there should exist some ‘leftmost’ partition
with a maximal number of root subtractions. Indeed this does exist, is unique and
importantly, has multiplicity one.

Lemma 4.3.1 (Lowest weight in decomposition). For sln with n sufficiently large,
given the tensor product decomposition of Vµ ⊗ Vν into Vλ of the form λ = µ+
ν −

∑n
i=1 kiαi , there exists a unique λ with multiplicity one such that k =

∑n
i=1 ki

is maximal. This is called the lowest weight in the decomposition.

Proof. Suppose µ and ν are partitions and that n is sufficiently large. Construct
a new partition λ by appending the columns of ν to the columns of µ pairwise
from the left. Since both µ and ν are partitions, λ is a valid partition. Consider a
filling of λ/µ with weight ν . By the semistandard condition, each column of λ/µ
must be filled with the integers 1, . . . , i where i is the height of the column. This
completely determines the filling and hence cλµν = 1. If there were any more boxes
in the first column, a strictly increasing filling along this column could never be
found. The same then holds recursively for the remaining columns and so the
partition λ has a maximal number of left shifts. Hence the corresponding k is
maximal.

Such a lowest weight also exists without the requirement on n. However, in
such scenarios we do now know whether this weight is always multiplicity free.

In the case where n is sufficiently large, there exists a simple explicit description
of the weight λ with maximal k. The lowest weight in the decomposition of
VΛi
⊗VΛ j

is given by subtracting the root sum α1+2α2+ · · ·+ j(α j+ · · ·+αi)+( j−
1)α j+1+ · · ·+2αi+ j−2+αi+ j−1 from Λi+Λ j . This root subtraction corresponds to
moving the first column from beside to below the second (Figure 4.16). Then for
more general partitions, it suffices to use the above formula on pairs of columns,
matched longest to shortest.

Unfortunately, the lowest weight phenomenon does not extend to other root
systems. An explicit counterexample is given by the following decomposition in
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Figure 4.16: Values of ki for the representation of lowest weight.

B2,

VΛ1
⊗ VΛ1+2Λ2

= V2Λ1
⊕ V2Λ2

⊕ VΛ1+2Λ2
⊕ V2Λ1+2Λ2

⊕ V4Λ2
.

Here there are two weights with ‘maximal’ k. In any weight lattice, there is a set of
parallel hyperplanes over which k is constant. In An−1 roots are never parallel to
these planes, however in other systems they may be. This is a possible explanation
for the observations here.

4.4 Minuscule weights

In the previous sections we looked at generalising the known phase integral
evaluations for sln by considering other multiplicity-free tensor products. An
important aspect of the Pieri rule is that, while one partition is restricted (either
a single column or row), the second is completely free. We would like to study
similar products in the other root systems. With this goal in mind, we look at the
minuscule weights.

A very simple type of highest weight module would be one where the set of
all weights in the module is a single orbit under the action of the Weyl group.
For such modules, the highest weight is called minuscule. In various parts of the
literature [6,15] the more precise definition below is used.

Definition 4.4.1 (Minuscule). A weight µ is minuscule if it satisfies

(µ,α∨) = 〈µ,α〉 ≤ 1 for all α ∈ Φ+.

This definition is equivalent to the weights being a single orbit under the Weyl
group. A proof of this fact is given below.

Lemma 4.4.1. The highest weight module indexed by µ has all its weights in a
single orbit under the Weyl group if and only if 〈µ,α〉 ≤ 1 for all α ∈ Φ+.
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Proof. The orbit of µ is given by {sα(µ) : α ∈ Φ}. Since sα = s−α this is equivalent
to the set {sα(µ) : α ∈ Φ+}. From Section 2.3 the explicit form of these reflections
is given by,

sα(µ) = µ− 〈µ,α〉α.

Recall that any weight in the module is of the form µ−
∑n

i=1 kiαi and that the
orbit of µ forms an outer shell for these weights.

Suppose then that 〈µ,α〉 ≤ 1 for all α ∈ Φ+. Then for any λ = µ−
∑n

i=1 kiαi,
either λ is in the orbit of µ or λ is outside the outer shell. Thus the module is
formed by a single orbit under the Weyl group.

For the reverse direction, suppose that 〈µ,α〉> 1 for some α ∈ Φ+. Then µ−α
is not in the orbit of µ. But µ− α is a weight in the highest weight module, so
there must be at least two orbits.

Another key property of the minuscule weights is that they are a subset of the
fundamental weights. To see this, suppose µ is not fundamental. So we may infer
that µ≥ Λi +Λ j for some not necessarily distinct i and j. If i = j then,

〈µ,αi〉 ≥ 2〈Λi ,αi〉
= 2.

Thus the weight µ is not minuscule. Otherwise, since the angle between distinct
simple roots is obtuse, we have αi +α j ∈ Φ+. Without loss of generality, assume
that αi is the shorter root. This then gives,

〈µ,αi +α j〉=
2(Λi +Λ j ,αi +α j)

(αi +α j ,αi +α j)

≥
2(Λi ,αi)
(αi ,αi)

+
2(Λ j ,α j)

(αi ,αi)

≥
2(Λi ,αi)
(αi ,αi)

+
2(Λ j ,α j)

(α j ,α j)

= 〈Λi ,αi〉+ 〈Λ j ,α j〉
= 2

So in this case also the weight is not minuscule. Thus the minuscule weights are a
subset of the fundamental weights.

We would like to know all the minuscule weights of the classical root systems.
As an example we demonstrate the classification of the minuscule weights of Bn.

Example 4.4.1. For Bn the fundamental weights and positive weights are,

Φ+ = {εi ± ε j : 1≤ i < j ≤ n} ∪ {εi : 1≤ i ≤ n}
Λi = ε1+ · · ·+ εi for 1≤ i < n

Λn =
1

2
(ε1+ · · ·+ εn)

46



Since the minuscule weights are a subset of the fundamental weights, it suffices
to check each fundamental weight. For each 1 ≤ i < n the weight Λi is not
minuscule as,

〈Λi ,ε1〉=
2(ε1+ · · ·+ εi ,ε1)

(ε1,ε1)
= 2.

The weight Λn is minuscule. For positive roots of the form εi we have,

〈Λn,εi〉=
2
�

1
2
(ε1+ · · ·+ εn),εi

�

(εi ,εi)
= 1.

and it then follows that for weights of the form εi − ε j we have

〈Λn,εi − ε j〉= 0.

Thus the single fundamental weight of Bn is Λn.

Similar calculations for the other classical systems result in a classification of
minuscule weights. These are given in Table 4.1 and also in Appendix A.

Root system Minuscule weight(s) Quasiminuscule
An All fundamental weights are minuscule
Bn Λn Λ1
Cn Λ1 Λ2
Dn Λ1,Λn−1,Λn Λ2

Table 4.1: The minuscule weights of the classical root systems.

In his second paper classifying the multiplicity-free tensor products Stembridge
[15] defines the quasiminuscule weights. These satisfy the property that,

(µ,α∨) = 〈µ,α〉 ≤ 2 for all α ∈ Φ+.

All minuscule weights are quasiminuscule. Additional ones are listed in Table 4.1.
The structure of modules generated by quasiminuscule weights are not as simple
as with minuscule weights, but they do share some characteristics. We will hence
also examine the Weyl orbits of some of these quasiminuscule weights.

Tensor products with minuscule weights

We would like to describe the ki values corresponding to tensor products with the
minuscule weights for Bn, Cn and Dn. Since any weight µ =

∑n
i=1µiΛi in the orbit
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Λ1

−ρ

Λ2

α1

Dominant chamber

µ+ρ dominant

Figure 4.17: The positive chamber with respects to the negative Weyl vector.

of a minuscule weight satisfies |µi| ≤ 1, we must have µ+ρ a dominant weight.
Colloquially, we think of this as µ being in the positive chamber with respects to
the negative Weyl vector. This is illustrated in Figure 4.17. As a consequence of
this, in Klimyk’s rule no reflections can take place. In particular, this means that
since all weights in the module have multiplicity one, the product is multiplicity
free.

This observation also allows us to give a simple description of the ki values.
As no reflections occur, the highest weights in the tensor product decomposition
described by Klimyk’s rule will only be a translation of the weights in the orbit of
µ. Since this shift does not change the ‘relative’ root subtractions, the ki values
are a subset of the number of roots subtracted from µ to give each weight in its
orbit.

In the following sections we endeavour to describe these ki values.

4.5 Minuscule modules over Bn

The root system Bn has a single minuscule weight Λn and a single quasiminuscule
weight Λ1. Both of these have all weights occurring with multiplicity one and
exhibit uniform tensor product structures.

The quasiminuscule module VΛ1

To describe the orbit of Λ1 under the Weyl group we construct a Cayley-like graph
of the weights under the action. For every weight in the graph, draw an edge
to depict the action of each generator of the Weyl group. Fortunately the simple
reflections act trivially on all the fundamental weights except for,

σi(Λi) = Λi −αi .
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Omitting these trivial actions from the diagram makes it much more manageable.
Enumerating these edges and the coefficients of the corresponding fundamental
weight precisely gives the list of ki values.

All the Cayley graphs that we draw will arise from studying the orbit of a
particular weight. With this in mind we will depict the edges as arrows to
demonstrate how the calculations proceed and to show the direction of the root
subtractions. Of course the reflections that these arrows describe have no inherent
direction to them.

The orbit of Λ1 is given below.

�

Λ1
� σ1−→

�

Λ2−Λ1
� σ2−→

�

Λ3−Λ2
� σ3−→ . . .

σn−2−−→
�

Λn−1−Λn−2
� σn−1−−→

�

2Λn−Λn−1
�

σn−→
�

−[−2Λn−Λn−1]
� σn−1−−→

�

−[Λn−1−Λn−2]
� σn−2−−→ . . .

σ1−→
�

−Λ1
�

We see here 2n weights in the orbit. To complete the standard representation,
which is 2n+ 1 dimensional, we add the only permitted weight, 0.

The ki values increase one after another until they are all one, then increase again
in the reverse order until all are two. This may be described by the inequalities
below. For each 0≤ m≤ n we have,

ki = 1 for 1≤ i ≤ m

ki = 0 for m< i ≤ n

or

ki = 1 for 1≤ i ≤ m

ki = 2 for m< i ≤ n.

The minuscule module VΛn

We wish to describe the weights in the module VΛn
of Bn. Since this module is

minuscule these weights will be precisely the orbit of Λn under the Weyl group.
This orbit is most convenient to describe recursively upon the rank of the root
system. To explain this recursion we give a few low-dimensional examples of the
construction and then describe the general pattern.

The weight lattice of B2 with the orbit of Λn is drawn in Figure 4.18. Here there
are only four weights in the orbit. Unfortunately the weight lattices of Bn for
larger values of n are impractical to draw, so instead we show the Cayley like
graphs of the orbits. This graph for B2 is also given in Figure 4.18

The Cayley graphs depicting the orbit of Λn in B3 and B4 are shown below in
Figures 4.19 and 4.20. Each graph is constructed by connecting two copies of the
previous graph. This is the general pattern that continues as the rank increases, a
result which we now prove.
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Λ2

Λ1−Λ2

Λ2−Λ1

−Λ2

σ2

σ1

σ2

α2

α1

Λ2

Figure 4.18: The orbit of Λ2 in B2.

Lemma 4.5.1. The weight −Λn occurs in VΛn
and has corresponding ki values

ki = i.

Proof. This is simply a computation. Apply the generators σn,σn−1, . . . ,σ1 then
σn,σn−1, . . . ,σ2 and so on until σn,σn−1 and σn.

�

Λn
� σn−→

�

Λn−1−Λn
� σn−1−−→

�

Λn−2−Λn−1
� σn−2−−→ . . .

σ2−→
�

Λ1−Λ2+Λn
�

σ1−→
�

−Λ1+Λn
�

h

σn−→ . . .
σ2−→
�

−Λ2+Λn
�

i

h

σn−→ . . .
σ3−→
�

−Λ3+Λn
�

i

. . .
h

σn−→ . . .
σn−1−−→

�

−Λn−1+Λn
�

i

σn−→
�

−Λn
�

Lemma 4.5.2. The full collection of weights in the Bn module VΛn
is given by the

following recursive construction.

� Take two copies of the Cayley graph for the orbit in Bn−1, call them X and
Y .

� Add one to all indices.

� Recursively, each X and Y has a positive and negative half.

� Add Λ1 to the negative half of X and the positive half of Y .

� Connect the negative weights in X to the positive weights in Y , following
the action of σ1.
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−Λ1+Λ3

−Λ1+Λ2−Λ3

−Λ2+Λ3

−Λ3

Λ3

Λ2−Λ3

Λ1−Λ2+Λ3

Λ1−Λ3

σ2

σ3

σ2

σ3

σ3

σ1

σ1

σ3

Figure 4.19: The orbit of Λ3 in B3.

� Finally, call X the new positive half and Y the new negative half.

Proof. The proof is by induction on n. We use two hypotheses, that the orbit of
Λn matches the construction described above and that half the weights at each
stage have been acted on by σ1, including −Λn.

As a base, the action for B2 satisfies the hypotheses.

To begin the induction, consider the orbit of Λn under 〈σ2, . . . ,σn〉. Following
the Dynkin diagram, taking this subgroup of the Weyl group may be thought of
as embedding Bn−1 in Bn. So by the inductive hypothesis we know what this
orbit looks like. The only difference (as reflected in the Cartan matrix) is that
the generator σ2 now adds Λ1. However this does not change the orbit since
σ2, . . . ,σn all act trivially on Λ1. By the second inductive hypothesis this Λ1 will
occur in precisely half of the weights. We call these weight the negative half.

Notably −Λn does not occur in the orbit of Λn under this restricted action. By
the first lemma it does however occur in the module. Consider next its orbit under
〈σ2, . . . ,σn〉. By linearity this will be precisely the negative of the previous orbit.
Again add −Λ1 to the positive half to account for the change in σ2.
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σ3

σ3

σ4

σ4

σ3

σ3

σ4

σ4

σ4

σ4

σ1

σ1 σ2

σ2

σ1

σ1 σ2

σ2

σ4

σ4

−Λ2 +Λ4

Λ1 −Λ2 +Λ4

−Λ2 +Λ3 −Λ4

Λ1 −Λ2 +Λ3 −Λ4

−Λ3 +Λ4

Λ1 −Λ3 +Λ4

−Λ4

Λ1 −Λ4

−Λ1Λ4

Λ4

−Λ1 +Λ3 −Λ4

Λ3 −Λ3

−Λ1 +Λ2 −Λ3 +Λ4

Λ2 −Λ3 +Λ4

−Λ1 +Λ2 −Λ4

Λ2 −Λ4

Figure 4.20: The orbit of Λ4 in B4.

The only action on the weights mentioned so far that is not accounted for is that
of s1. This action gives a bijection between the negative halves of X and Y . To
describe this bijection we need the n− 2 case of the induction.

Structurally the negative half of X and the positive half of Y both resemble the
n−2 case of the induction. If we remove Λ1 and Λ2 they are in fact identical. The
bijection given by the action σ1 is effectively the identity map here. All weights in
the negative half of X have +Λ1 and all in the positive half of Y have −Λ1. From
the n−1 case, the first half in the negative set of X will have −Λ2 while the others
will have no Λ2. Similarly the first half in the positive set of Y will have no Λ2 and
the others will have +Λ2.

Then the action of σ1 forms a bijection by the calculations,

�

Λ1−Λ2+ . . .
� σ1−→

�

−Λ1+ . . .
�

�

Λ1+ . . .
� σ1−→

�

−Λ1+Λ2+ . . .
�

.

The various subsets here are more clearly illustrated with Figure 4.22. The
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σ3

σ3

σ4

σ4

σ3

σ3

σ4

σ4

σ4

σ4

σ1

σ1 σ2

σ2

σ1

σ1 σ2

σ2

σ4

σ4

−Λ2 +Λ4

Λ1 −Λ2 +Λ4

−Λ2 +Λ3 −Λ4

Λ1 −Λ2 +Λ3 −Λ4

−Λ3 +Λ4

Λ1 −Λ3 +Λ4

−Λ4

Λ1 −Λ4

−Λ1Λ4

Λ4

−Λ1 +Λ3 −Λ4

Λ3 −Λ3

−Λ1 +Λ2 −Λ3 +Λ4

Λ2 −Λ3 +Λ4

−Λ1 +Λ2 −Λ4

Λ2 −Λ4

Y

NegativeNegative

Positive

Positive

X

Figure 4.21: Sets used in the recursion.

bijection above then completely describes the action of σ1. Thus we have found
all the weights in the orbit and they follow the desired construction.

Every highest weight module which can occur in the direct sum decomposition
will have ki values corresponding to the number of roots subtracted from Λn to
get each weight in the orbit. The following theorem describes these ki values.

Theorem 4.5.3 (ki values for VΛn
). Given the construction in the lemma above

the ki values are described by the two inequalities,

ki ≤ i

0≤ ki+1− ki ≤ 1.

Proof. The proof will be inductive. As a base case, the inequalities given precisely
describe the ki values in B2.
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−Λ1+Λ2+ . . .

−Λ1+ . . .

σ3

Y (positive)

X (negative)

Λ1+ . . .

Λ1−Λ2+ . . .

σ3 σ1

σ1

Figure 4.22: The bijection induced by σ1.

Now from the recursive structure, the weights may be divided into two sets. Call
the set X those which are attached to Λn under 〈σα2

, . . . ,σαn
〉. The similar orbit

of −Λn is called Y and contains only the negatives of the weights in X .

We will use the n− 1 case to describe the ki values of the two sets. The weights
in X have exactly the same number of roots subtracted as those in the Bn−1 case.
Symmetry allows us to describe the ki values for Y . Since these weights are
exactly the negatives of those in X , the Bn−1 case tells us how many simple roots
can be added to −Λn to get each weight. From the first lemma we know exactly
the coordinates of −Λn and hence we may describe the rest.

Firstly we show that all the weights satisfy the inequalities. From the n− 1 case,
if a weight is in X it has ki values given by,

k1 = 0

ki ≤ i− 1

0≤ ki+1− ki ≤ 1 for i = 2, . . . , n− 1.

Since k1 = 0 there holds 0 ≤ k2 − k1 ≤ 1 and so all weights in X satisfy the
proposed inequalities.

With the inductive case, any weight in Y may be described by −Λn +
∑n

i=1 uiΛi
satisfying,

u1 = 0

ui ≤ i− 1

0≤ ui+1− ui ≤ 1.
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By the first lemma the ki values are then given by ki = i − ui . Since ui ≥ 0, there
must hold ki ≤ i. Also,

ki+1− ki = (i+ 1− ui+1)− (i− ui)

= 1− (ui+1− ui)

so 0≤ ki+1− ki ≤ 1. Thus all the weights in Y satisfy the proposed inequalities.

For the second step we, show that every set of ki values given by the inequalities
correspond to some root.

If k1 = 0 then,

ki = (ki − ki−1) + (ki−1− ki−2) + · · ·+ (k2− k1)

≤ i− 1.

This occurs as a weight in X by the inductive case.

If k = 1 consider ui = i−ki . From a similar calculation as before 0≤ ui+1−ui ≤ 1.
Since u1 = 0 there holds ui ≤ i− 1. So these ki values occur as a weight in Y .

4.6 Minuscule modules over Cn

The root system Cn has only a single minuscule weight Λ1.

The minuscule module VΛ1

This module closely resembles the quasiminuscule module of Bn. It has 2n weights
which form a single chain as the Weyl orbit.

�

Λ1
� σ1−→

�

Λ2−Λ1
� σ2−→

�

Λ3−Λ2
� σ3−→ . . .

σn−1−−→
�

Λn−Λn−1
� σn−→

�

Λn−1−Λn
� σn−1−−→

�

Λn−2−Λn−1
� σn−2−−→ . . .

σ1−→
�

−Λ1
�

The ki values are also similar to those from Bn. They increase from 0 to 1 step
by step for each i as i increases. Then they increase from 1 to 2 step by step for
each i < n as i decreases. This may be described with the following formula.

For each 1≤ m≤ n we have a set of ki values,

ki = 1 for 1≤ i ≤ m

ki = 0 for m+ 1≤ i ≤ n

and

ki = 2 for 1≤ i < m

ki = 1 for m≤ i ≤ n.
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4.7 Minuscule modules over Dn

The root system Dn has three minuscule weights, Λ1, Λn−1 and Λn.

The minuscule module VΛ1

Again this module shares much of its structure with the standard representations
of B and C. The Weyl orbit is a single chain, until the reflections σn−1 and σn
have a nontrivial action. Then the orbit bifurcates before rejoining and continuing
along the negative of the original chain. A calculation to verify this creates the
Cayley graph of Figure 4.23.

Λn−1−Λn

σn
σn−1

−Λn−1+Λn

σn
σn−1

Λ1

Λ2−Λ1

σ2

σ1

−Λn−2+Λn−1+Λn

Λn−2−Λn−3

σn−2

σn−3

Λn−2−Λn−1−Λn

σn−2

−Λ1

σ1

Figure 4.23: The weight orbit of Λ1 in Dn.

We describe the two chains and the two symmetrical cases separately. For each
m satisfying 1≤ m≤ n− 1 we have the first chain,

ki = 1 for 1≤ i ≤ m

ki = 0 for i > m,
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the two symmetrical cases,

ki = 1 for 1≤ i ≤ n− 2

kn−1 = 1, kn = 0

or

ki = 1 for 1≤ i ≤ n− 2

kn−1 = 0, kn = 1

and finally the last chain,

ki = 1 for 1≤ i ≤ m

ki = 2 for m< i ≤ n− 2

kn−1 = kn = 1.

The minuscule modules VΛn−1
and VΛn

These modules are easiest to describe together. In D4 both these weights have
orbits identical to that of Λ3 in B3. These are shown in Figure 4.24.

−Λ1+Λ3

−Λ1+Λ2−Λ3

−Λ2+Λ4

−Λ4

Λ4

Λ2−Λ4

Λ1−Λ2+Λ3

Λ1−Λ3

σ2

σ3

σ2

σ4

σ4

σ1

σ1

σ3

−Λ1+Λ4

−Λ1+Λ2−Λ4

−Λ2+Λ3

−Λ3

Λ3

Λ2−Λ3

Λ1−Λ2+Λ4

Λ1−Λ4

σ2

σ4

σ2

σ3

σ3

σ1

σ1

σ4

Figure 4.24: The weight orbits of Λ3 and Λ4 in D4.

In higher dimensions the orbit again echoes that of Bn. Specifically, the same
recursive construction is observed. However instead of taking two copies of the
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previous orbit for X and Y we instead take the previous orbit of Λn as X and the
previous orbit of Λn−1 as Y . Continuing with the construction unchanged apart
from this then results in the module for Λn.

Unlike in the B case, this module does not contain −Λn. It does however contain
−Λn−1. Hence to get the orbit of VΛn−1

, simply take the negative of the orbit for
Λn.
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Classical root
systems A

This appendix provides a summary of the relevant information about the classical
root systems. The expressions given for the roots and weights correspond to the
standard embedding in Rn [8].

A.1 The root system An−1.

The root system An−1 corresponds to the semisimple Lie algebra sl(n,C) of n-
dimensional complex matrices with trace zero. Here it is easiest to describe the
roots and weights if we embed the system in a vector space of dimension one
higher than the rank of the system.

Dynkin diagram
2 3 r − 1 r1

Cartan matrix



























2 −1 0

−1 2 −1 0
... . . . . . .

0 −1 2 −1

0 −1 2



























Roots Φ = {εi − ε j : 1≤ i 6= j ≤ n}

Simple roots αi = εi − εi+1 (1≤ i ≤ n− 1)

Positive roots Φ+ = {εi − ε j : 1≤ i < j ≤ n}

Fundamental weights Λi = ε1+ · · ·+ εi −
i
n
(ε1+ · · ·+ εn)

Minuscule weights All fundamental weights are minuscule.
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A.2 The root system Bn.

The root system Bn corresponds to the semisimple Lie algebra o(2n+ 1,C) called
the odd orthogonal algebra.

Dynkin diagram
2 3 r − 1 r1

Cartan matrix







































2 −1 0

−1 2 −1 0

0 −1 2 −1 0
... . . . . . .

0 −1 2 −1 0

0 −1 2 −2

0 −1 2







































Roots Φ = {±(εi ± ε j) : 1≤ i 6= j ≤ n} ∪ {±εi : 1≤ i ≤ n}

Simple roots αi = εi − εi+1 (1≤ i ≤ n− 1), αn = εn

Positive roots Φ+ = {εi ± ε j : 1≤ i < j ≤ n} ∪ {εi : 1≤ i ≤ n}

Fundamental weights
Λi = ε1+ · · ·+ εi

Λn =
1
2
(ε1+ · · ·+ εn)

Minuscule weight Λn

Quasiminuscule weight Λ1
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A.3 The root system Cn.

The root system Cn corresponds to the semisimple Lie algebra sp(2n,C) called the
symplectic Lie algebra.

Dynkin diagram
2 3 r − 1 r1

Cartan matrix







































2 −1 0

−1 2 −1 0

0 −1 2 −1 0
... . . . . . .

0 −1 2 −1 0

0 −1 2 −1

0 −2 2







































Roots Φ = {±(εi ± ε j) : 1≤ i 6= j ≤ n} ∪ {±2εi : 1≤ i ≤ n}

Simple roots αi = εi − εi+1 (1≤ i ≤ n− 1), αn = 2εn

Positive roots Φ+ = {εi ± ε j : 1≤ i < j ≤ n} ∪ {2εi : 1≤ i ≤ n}

Fundamental weights Λi = ε1+ · · ·+ εi

Minuscule weight Λ1

Quasiminuscule weight Λ2
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A.4 The root system Dn.

The root system Dn corresponds to the semisimple Lie algebra o(2n,C) called the
even orthogonal algebra.

Dynkin diagram

2 3 r − 2

r

r − 1

1

Cartan matrix







































2 −1 0

−1 2 −1 0

0 −1 2 −1 0
... . . . . . .

0 −1 2 −1 −1

0 −1 2 0

−1 0 2







































Roots Φ = {±(εi ± ε j) : 1≤ i 6= j ≤ n}

Simple roots αi = εi − εi+1 (1≤ i ≤ n− 1), αn = εi−1+ εn

Positive roots Φ+ = {εi ± ε j : 1≤ i < j ≤ n}

Fundamental weights

Λi = ε1+ · · ·+ εi

Λn−1 =
1
2
(ε1+ · · ·+ εn−1− εn)

Λn =
1
2
(ε1+ · · ·+ εn−1+ εn)

Minuscule weights Λ1,Λn−1,Λn

Quasiminuscule weight Λ2
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